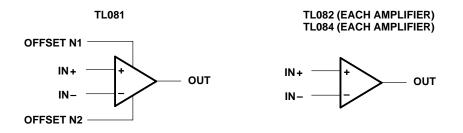
- Low Power Consumption
- Wide Common-Mode and Differential Voltage Ranges
- Low Input Bias and Offset Currents
- Output Short-Circuit Protection
- Low Total Harmonic Distortion . . . 0.003% Typ


description

- High Input Impedance . . . JFET-Input Stage
- Latch-Up-Free Operation
- High Slew Rate ... 13 V/μs Typ
- Common-Mode Input Voltage Range Includes V_{CC+}

The TL08x JFET-input operational amplifier family is designed to offer a wider selection than any previously developed operational amplifier family. Each of these JFET-input operational amplifiers incorporates well-matched, high-voltage JFET and bipolar transistors in a monolithic integrated circuit. The devices feature high slew rates, low input bias and offset currents, and low offset voltage temperature coefficient. Offset adjustment and external compensation options are available within the TL08x family.

The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized for operation from -40°C to 85°C. The M-suffix devices are characterized for operation over the full military temperature range of -55°C to 125°C.

symbols

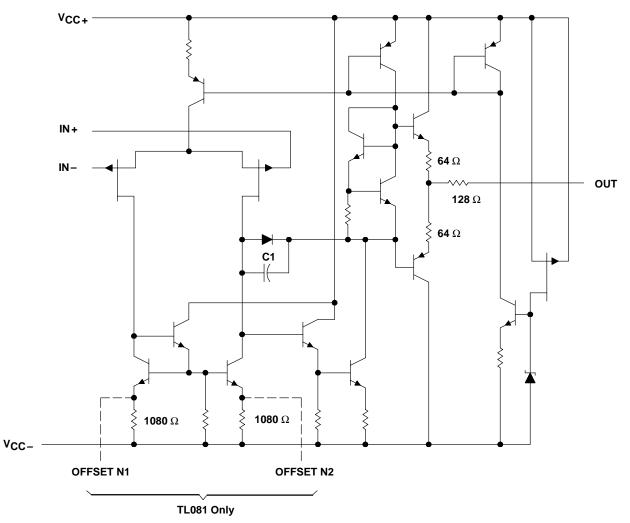
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1997, Texas Instruments Incorporated On products compliant to MIL-PRF-38535, all parameters are tested unless otherwise noted. On all other products, production processing does not necessarily include testing of all parameters.

TL082M TL081M U PACKAGE U PACKAGE (TOP VIEW) (TOP VIEW) NC [10 NC NC 10 NC 1 OFFSET N1 9 NC 10UT [9 V_{CC+} 2 2 8 VCC+ IN-8 20UT 3 1IN-[3 IN+[Ι Ουτ 7 2IN-4 7 1IN+ [4 6 OFFSET N2 6 21N+ 5 Vcc-L Vcc-[5 TL081, TL081A, TL081B TL082, TL082A, TL082B D, JG, P, OR PW PACKAGE D, JG, P, OR PW PACKAGE (TOP VIEW) (TOP VIEW) OFFSET N1 8 1 NC 10UT 8 VCC+ IN-7 VCC+ 1IN- [7 20UT Π 2 2 6 🛛 OUT 6 🛛 2IN-IN+ [] 1IN+ ∏ 3 3 5 OFFSET N2 V_{CC-} V_{CC}-2IN+ 4 4 5 TL081M ... FK PACKAGE TL082M ... FK PACKAGE (TOP VIEW) (TOP VIEW) ž OFFSET NC 10U ο 2 Z g g N N N 1 20 19 2 18**П** NC NC 4 2 3 1 20 19 1IN-20UT 5 17 NC NC 18 NC NC 6 16 IN-Π 5 17 V_{CC+} 1IN+ 2IN-Π 7 15 NC 6 NC 16 NC 8 NC IN+ OUT 7 15 9 10 11 12 13 NC NC П 8 NC - NC 9 10 11 12 13 2IN + Я g VCC -N Z S Я OFFSET TL084M ... FK PACKAGE (TOP VIEW) TL084, TL084A, TL084B 10UT NC 40UT 4IN -D, J, N, PW, OR W PACKAGE Í (TOP VIEW) 3 2 1 20 19 18 4IN+1IN+ 10UT [14 40UT 1 NC NC h 17 1IN-[5 13 4IN-2 VCC-V_{CC+} 16 1IN+ 🛛 3 6 12 4IN+ NC h NC 15 7 V_{CC+} 11 VCC-4 2IN+ Π 14 3IN+ 8 2IN+ 5 10 3IN+ 9 10 11 12 13 9 3IN-2IN-6 S 30UT 2IN -2OUT I 20UT 30UT 7 8 ЗIN

NC – No internal connection

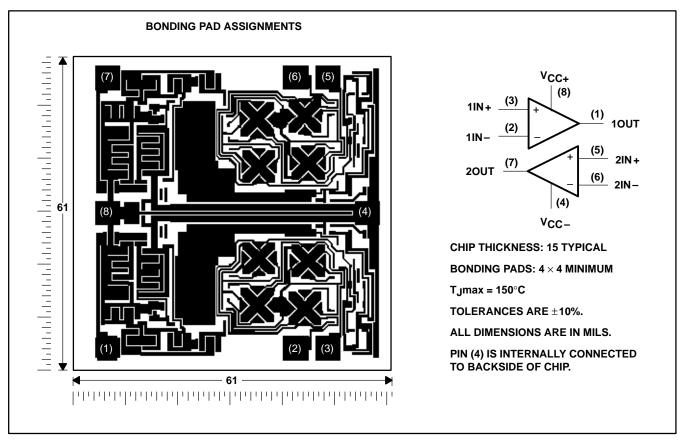

		•			AVA	ILABLE OPT	ONS					
						PACKAGE	DEVICES					СНІР
TA	V _{IO} max AT 25°C	SMALL OUTLINE (D008)	SMALL OUTLINE (D014)	CHIP CARRIER (FK)	CERAMIC DIP (J)	CERAMIC DIP (JG)	PLASTIC DIP (N)	PLASTIC DIP (P)	TSSOP (PW)	FLAT PACK (U)	FLAT PACK (W)	FORM (Y)
	15 mV 6 mV 3 mV	TL081CD TL081ACD TL081BCD	—	_	_	_	_	TL081CP TL081ACP TL081BCP	TL081CPW	_	_	_
0°C to 70°C	15 mV 6 mV 3 mV	TL082CD TL082ACD TL082BCD	_	_	_	_	_	TL082CP TL082ACP TL082BCP	TL082CPW	_	_	TL082Y
	15 mV 6 mV 3 mV	_	TL084CD TL084ACD TL084BCD	_	_	_	TL084CN TL084ACN TL084BCN	_	TL084CPW		_	TL084Y
-40°C to 85°C	6 mV 6 mV 6 mV	TL081ID TL082ID TL084ID	TL084ID	_	_	_	TL084IN	TL081IP TL082IP	_		_	_
−55°C to 125°C	6 mV 6 mV 9 mV	_	_	TL081MFK TL082MFK TL084MFK	TL084MJ	TL081MJG TL082MJG	_	_	_	TL081MU TL082MU	TL084MW	_

The D package is available taped and reeled. Add R suffix to the device type (e.g., TL081CDR).

TL081, TL081A, TL081B, TL082, TL082A, TL082B TL082Y, TL084, TL084A, TL084B, TL084Y JFET-INPUT OPERATIONAL AMPLIFIERS SLOSOBID - FEBRUARY 1977 - REVISED FEBRUARY 1997

SLOS081D – FEBRUARY 1977 – REVISED FEBRUARY

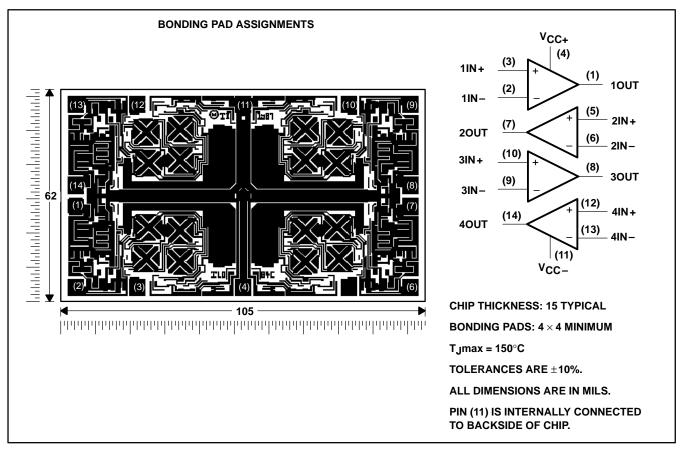
schematic (each amplifier)



Component values shown are nominal.

TL082Y chip information

These chips, when properly assembled, display characteristics similar to the TL082. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. Chips may be mounted with conductive epoxy or a gold-silicon preform.



SLOS081D - FEBRUARY 1977 - REVISED FEBRUARY 1997

TL084Y chip information

These chips, when properly assembled, display characteristics similar to the TL084. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. Chips may be mounted with conductive epoxy or a gold-silicon preform.

SLOS081D - FEBRUARY 1977 - REVISED FEBRUARY 1997

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

		TL08_C TL08_AC TL08_BC	TL08_I	TL08_M	UNIT	
Supply voltage, V _{CC+} (see Note 1)		18	18	18	V	
Supply voltage V _{CC} - (see Note 1)	-18	-18	-18	V		
Differential input voltage, VID (see Note 2)	± 30	± 30	± 30	V		
Input voltage, VI (see Notes 1 and 3)	±15	±15	±15	V		
Duration of output short circuit (see Note 4)	unlimited	unlimited	unlimited			
Continuous total power dissipation		See Dissipation Rating Table				
Operating free-air temperature range, T _A		0 to 70	- 40 to 85	– 55 to 125	°C	
Storage temperature range, T _{stg}		– 65 to 150	– 65 to 150	– 65 to 150	°C	
Case temperature for 60 seconds, T _C	FK package			260	°C	
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds	J or JG package			300	°C	
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	D, N, P, or PW package	260	260		°C	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between V_{CC+} and V_{CC-}.

2. Differential voltages are at IN+ with respect to IN-.

3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less.

4. The output may be shorted to ground or to either supply. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded.

				-		
PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR	DERATE ABOVE T _A	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	T _A = 125°C POWER RATING
D (8 pin)	680 mW	5.8 mW/°C	32°C	460 mW	373 mW	N/A
D (14 pin)	680 mW	7.6 mW/°C	60°C	604 mW	490 mW	N/A
FK	680 mW	11.0 mW/°C	88°C	680 mW	680 mW	273 mW
J	680 mW	11.0 mW/° C	88°C	680 mW	680 mW	273 mW
JG	680 mW	8.4 mW/°C	69°C	672 mW	546 mW	210 mW
N	680 mW	9.2 mW/°C	76°C	680 mW	597 mW	N/A
Р	680 mW	8.0 mW/°C	65°C	640 mW	520 mW	N/A
PW (8 pin)	525 mW	4.2 mW/°C	25°C	336 mW	N/A	N/A
PW (14 pin)	700 mW	5.6 mW/°C	25°C	448 mW	N/A	N/A
U	675 mW	5.4 mW/°C	25°C	432 mW	351 mW	135 mW
W	680 mW	8.0 mW/°C	65°C	640 mW	520 mW	200 mW

DISSIPATION RATING TABLE

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	UNIT		TL081I TL082I TL084I		;	TLO81B0 TL082B0 TL084B0	1	TL081AC TL082AC TL084AC		TL081C TL082C TL084C		T _A †	TEST CONDITIONS		PARAMETER			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		MAX	TYP	MIN	MAX	TYP	MIN	MAX	TYP	MIN	MAX	TYP	MIN					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	mV	6	3		3	2		6	3		15	3		25°C	$B_{0} = 50.0$	$V_{0} = 0$	Input offset voltage	Vie
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	IIIV	9			5			7.5			20			Full range	112 - 00 22	V O = 0	input onset voltage	VI0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	μV/°C		18			18			18			18		Full range	R _S = 50 Ω	V _O = 0	coefficient of input	αVIO
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	pА	100	5		100	5		100	5		200	5		25°C		$V_{O} = 0$		lio
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	nA	10			2			2			2			Full range		V O = 0	Input onset current+	U
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	pА	200	30		200	30		200	30		400	30		25°C		$V_{O} = 0$	B Input bias current [‡]	lip
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	nA	20			7			7			10			Full range		v0= v		VO = 0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $														0.500				VICR
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	V			±11			±11			±11			±11	25°C				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			±13.5	±12		±13.5	±12		±13.5	±12		±13.5	±12	25°C		$R_L = 10 \ k\Omega$		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	V			±12			±12			±12			±12	Full range		$R_L \ge 10 \ k\Omega$	•	VOM
Avpdifferential voltage amplificationVO = ± 10 V, RL ≥ 2 kΩFull range152525B1Unity-gain bandwidth25°C3333riInput resistance25°C1012101210121012CMRRCommon-mode rejection ratioVIC = VICRMIN, VO = 0, RS = 50 Ω25°C708675867586Supply voltage rejection ratioVCC = ± 15 V to \pm 9 V, VO = 0, RS = 50 Ω25°C708680868086			±12	±10		±12	±10		±12	±10		±12	±10	Fuirtange		$R_L \ge 2 k\Omega$	ouiput voltage swing	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	V/mV		200	50		200	50		200	50		200	25	25°C	$R_L \ge 2 k\Omega$	$V_{O} = \pm 10 V$,		A
ri Input resistance 25° C 10^{12} <	v/IIIv			25			25			25			15	Full range	$R_L \ge 2 k\Omega$	$V_{O} = \pm 10 V$,	•	AVD
CMRRCommon-mode rejection ratio $V_{IC} = V_{ICR}min$, $V_O = 0$, $R_S = 50 \Omega$ $25^{\circ}C$ 708675867586Supply voltage rejection ratio $V_{CC} = \pm 15 V \text{ to } \pm 9 V$, $V_O = 0$ $R_S = 50 \Omega$ $25^{\circ}C$ 708680868086	MHz		3			3			3			3		25°C			Unity-gain bandwidth	B ₁
CMRR rejection ratio $V_O = 0$, $R_S = 50 \Omega$ 25°C 70 86 75 86 80 86 80 86 </td <td>Ω</td> <td></td> <td>1012</td> <td></td> <td></td> <td>1012</td> <td></td> <td></td> <td>1012</td> <td></td> <td></td> <td>1012</td> <td></td> <td>25°C</td> <td></td> <td></td> <td>Input resistance</td> <td>ri</td>	Ω		1012			1012			1012			1012		25°C			Input resistance	ri
k _{SVR} rejection ratio $V_{CC} = \pm 15 \ V \ to \pm 9 \ V,$ $25^{\circ}C$ 70 86 80 86 80 86 80 86	dB		86	75		86	75		86	75		86	70	25°C				CMRR
	dB		86	80		86	80		86	80		86	70	25°C				ksvr
ICC Supply current (per amplifier) $V_O = 0$, No load 25°C 1.4 2.8 1.4 2.8 1.4 2.8	mA	2.8	1.4		2.8	1.4		2.8	1.4		2.8	1.4		25°C	No load	V _O = 0,		ICC
V_{O1}/V_{O2} Crosstalk attenuation $A_{VD} = 100$ 25°C 120 120 120 120 120	dB		120			120			120			120		25°C		A _{VD} = 100	Crosstalk attenuation	V ₀₁ /V ₀₂

[†] All characteristics are measured under open-loop conditions with zero common-mode voltage unless otherwise specified. Full range for T_A is 0°C to 70°C for TL08_C, TL08_AC, TL08_BC and -40°C to 85°C for TL08_I.

[‡] Input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive as shown in Figure 17. Pulse techniques must be used that maintain the junction temperature as close to the ambient temperature as possible.

POST OFFICE BOX 655303• DALLAS, TEXAS 75265

TL081, TL082Y JFET-IN

TL081A, TL081B, TL082,

TL082A, TL082B

082Y, TL084, TL084A, TL084B, TL084Y ET-INPUT OPERATIONAL AMPLIFIERS

SLOS081D - FEBRUARY 1977 - REVISED FEBRUARY 1997

-		7507.001		_	TL08	31M, TLO	82M		TL084M		
F	PARAMETER	TEST CON	DITIONS	ТА	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
Vie	Input offset voltage		$P_{0} = 50.0$	25°C		3	6		3	9	mV
VIO	input onset voltage	V _O = 0,	R _S = 50 Ω	-55°C to 125°C			9			15	mv
αΛΙΟ	Temperature coefficient of input offset voltage	V _O = 0	R _S = 50 Ω	–55°C to 125°C		18			18		μV/°C
li o	lanut affaat aumant	$V_{O} = 0$		25°C		5	100		5	100	pА
10	Input offset current‡	AO = 0		125°C			20			20	nA
	Input bias current‡	$V_{O} = 0$		25°C		30	200		30	200	pА
IВ	Input bias current+	VO = 0		125°C			50			50	nA
VICR	Common-mode input voltage range			25°C	±11	±12 to 15		±11	± 12 to 15		V
		$R_L = 10 \text{ k}\Omega$		25°C	±12	±13.5		±12	±13.5		
VOM	Maximum peak output voltage swing	$R_L \ge 10 \ k\Omega$		–55°C to 125°C	±12			±12			V
		$R_L \ge 2 \ k\Omega$		-55 C 10 125 C	±10	±12		±10	±12		
A. (5)	Large-signal	$V_{O} = \pm 10 V$,	$R_L \ge 2 \ k\Omega$	25°C	25	200		25	200		V/mV
AVD	differential voltage amplification	$V_{O} = \pm 10 V$,	$R_L \ge 2 \ k\Omega$	-55°C to 125°C	15			15			v/IIIv
B ₁	Unity-gain bandwidth			25°C		3			3		MHz
r _i	Input resistance			25°C		1012			1012		Ω
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR}m$ $V_O = 0,$	nin, R _S = 50 Ω	25°C	80	86		80	86		dB
ksvr	Supply voltage rejection ratio $(\Delta V_{CC\pm}/\Delta V_{IO})$	$V_{CC} = \pm 15 V_{O}$ $V_{O} = 0,$	V to ±9 V, R _S = 50 Ω	25°C	80	86		80	86		dB
ICC	Supply current (per amplifier)	V _O = 0,	No load	25°C		1.4	2.8		1.4	2.8	mA
V01/V02	Crosstalk attenuation	A _{VD} = 100		25°C		120			120		dB

electrical characteristics, $V_{CC\pm} = \pm 15$ V (unless otherwise noted)

[†] All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise specified.

[‡] Input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive as shown in Figure 17. Pulse techniques must be used that maintain the junction temperatures as close to the ambient temperature as is possible.

operating characteristics, V_{CC \pm} = \pm 15 V, T_A = 25°C (unless otherwise noted)

	PARAMETER		TEST CONDIT	TIONS		MIN	TYP	MAX	UNIT
		V _I = 10 V,	$R_L = 2 k\Omega$,	C _L = 100 pF,	See Figure 1	8*	13		
SR	Slew rate at unity gain	$V_I = 10 V,$ $T_A = -55^{\circ}C \text{ to } 125^{\circ}C,$	$R_L = 2 k\Omega$, See Figure 1	C _L = 100 pF,		5*			V/µs
tr	Rise time	Vi = 20 mV,	$R_1 = 2 k\Omega$,	C _I = 100 pF,	See Figure 1		0.05		μs
	Overshoot factor	v] = 20 mv,	$R_{L} = 2 \text{ Ksz},$	$C_{L} = 100 \text{ pr},$	See Figure 1		20%		
V	Equivalent input noise voltage	$R_S = 20 \Omega$	f = 1 kHz		18		nV/√Hz		
Vn		$R_{S} = 20.52$	f = 10 Hz to 10 kHz				4		μV
I _n	Equivalent input noise current	R _S = 20 Ω,	f = 1 kHz				0.01		pA/√Hz
THD	Total harmonic distortion	Vırms = 6 V, f = 1 kHz	A _{VD} = 1,	$R_{S} \leq 1 \ k\Omega$,	$R_L \ge 2 k\Omega$,		0.003%		

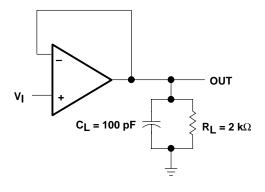
*On products compliant to MIL-PRF-38535, this parameter is not production tested.

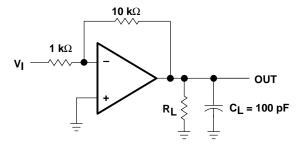
SLOS081D – FEBRUARY 1977 – REVISED FEBRUARY 1997

electrical characteristics, V_{CC\pm} = ± 15 V, T_A = 25°C (unless otherwise noted)

	DADAMETED	TEST CON	DITIONET	TLO	82Y, TL0	84Y	UNIT
	PARAMETER	TEST CON	DITIONS	MIN	TYP	MAX	UNIT
VIO	Input offset voltage	V _O = 0,	R _S = 50 Ω		3	15	mV
ανιο	Temperature coefficient of input offset voltage	V _O = 0,	R _S = 50 Ω		18		μV/°C
1 ₁₀	Input offset current [‡]	V _O = 0,			5	200	pА
I _{IB}	Input bias current‡	V _O = 0,			30	400	pА
VICR	Common-mode input voltage range			±11	-12 to 15		V
VOM	Maximum peak output voltage swing	R _L = 10 kΩ,		±12	±13.5		V
AVD	Large-signal differential voltage amplification	V _O = ±10 V,	$R_L \ge 2 k\Omega$	25	200		V/mV
B ₁	Unity-gain bandwidth				3		MHz
r _i	Input resistance				10 ¹²		Ω
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR}$ min, R _S = 50 Ω	$V_{O} = 0,$	70 70	86 86		dB
ksvr	Supply voltage rejection ratio ($\Delta V_{CC\pm}/\Delta V_{IO})$		$\label{eq:VCC} \begin{array}{l} V_{CC} = \pm 15 \ V \ \mathrm{to} \pm 9 \ V, \\ V_{O} = 0, \qquad R_{S} = 50 \ \Omega \end{array}$		86 86		dB
ICC	Supply current (per amplifier)	V _O = 0,	No load		1.4	2.8	mA
V _{O1} /V _{O2}	Crosstalk attenuation	A _{VD} = 100			120		dB

[†] All characteristics are measured under open-loop conditions with zero common-mode voltage unless otherwise specified.


[‡] Input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive as shown in Figure 17. Pulse techniques must be used that maintain the junction temperature as close to the ambient temperature as possible.


operating characteristics, V_{CC\pm} = ± 15 V, T_A = 25°C

	PARAMETER		TEST CO	NDITIONS		MIN	TYP	MAX	UNIT
SR	Slew rate at unity gain	V _I = 10 V,	$R_L = 2 k\Omega$,	C _L = 100 pF,	See Figure 1	8	13		V/µs
tr	Rise time	$\lambda = 20 \text{ m}$	$P_{\rm L} = 2 k \Omega$	C _L = 100 pF,	See Figure 1		0.05		μs
	Overshoot factor	V _I = 20 mV,	κ <u>ι</u> = 2 κ <u>ν</u> ,				20%		
		Ba 20.0	f = 1 kHz				18		nV/√Hz
Vn	Equivalent input noise voltage	R _S = 20 Ω	f = 10 Hz to	f = 10 Hz to 10 kHz					μV
۱ _n	Equivalent input noise current	R _S = 20 Ω,	f = 1 kHz				0.01		pA/√Hz
THD	Total harmonic distortion	Vırms = 6 V, f = 1 kHz	$A_{VD} = 1$,	R _S ≤ 1 kΩ,	$R_L \ge 2 k\Omega$,		0.003%		

PARAMETER MEASUREMENT INFORMATION

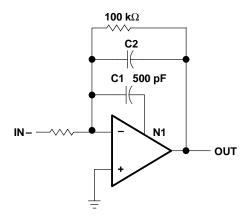


Figure 3

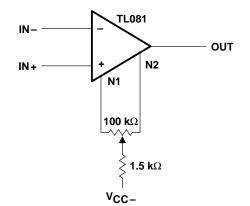
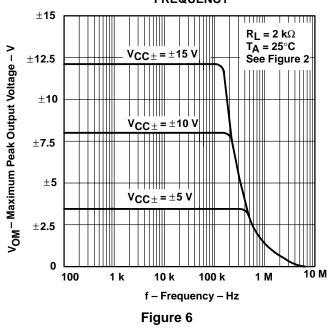


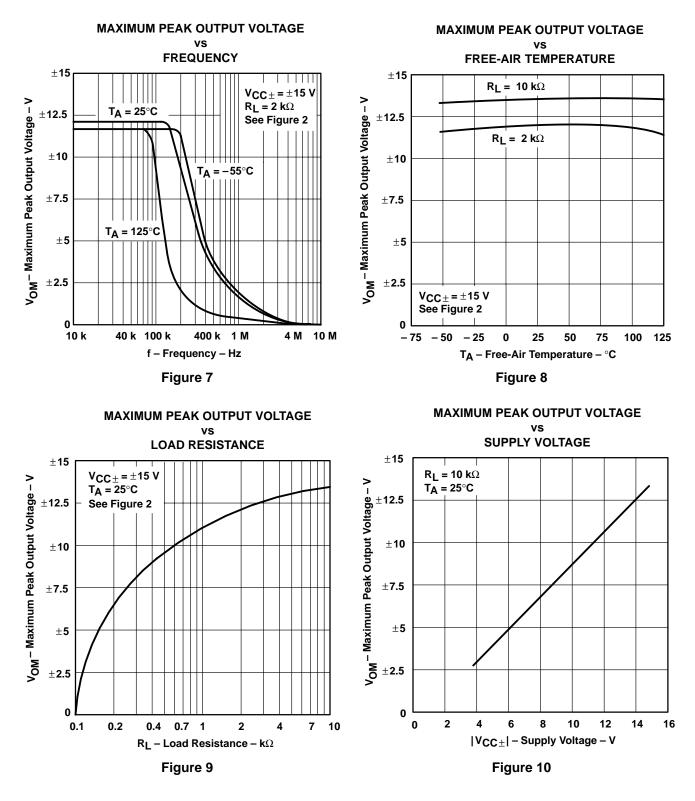
Figure 4

SLOS081D - FEBRUARY 1977 - REVISED FEBRUARY 1997

TYPICAL CHARACTERISTICS

			FIGURE
VOM	Maximum peak output voltage	vs Frequency vs Free-air temperature vs Load resistance vs Supply voltage	5, 6, 7 8 9 10
AVD	Large-signal differential voltage amplification	vs Free-air temperature vs Frequency	11 12
	Differential voltage amplification	vs Frequency with feed-forward compensation	13
PD	Total power dissipation	vs Free-air temperature	14
lcc	Supply current	vs Free-air temperature vs Supply voltage	15 16
IB	Input bias current	vs Free-air temperature	17
	Large-signal pulse response	vs Time	18
٧ ₀	Output voltage	vs Elapsed time	19
CMRR	Common-mode rejection ratio	vs Free-air temperature	20
Vn	Equivalent input noise voltage	vs Frequency	21
THD	Total harmonic distortion	vs Frequency	22


Table of Graphs


MAXIMUM PEAK OUTPUT VOLTAGE

vs FREQUENCY

TYPICAL CHARACTERISTICS[†]

SLOS081D - FEBRUARY 1977 - REVISED FEBRUARY 1997

TYPICAL CHARACTERISTICS[†]

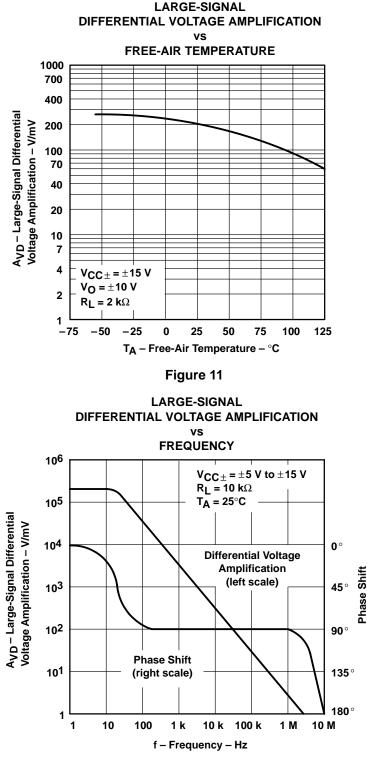
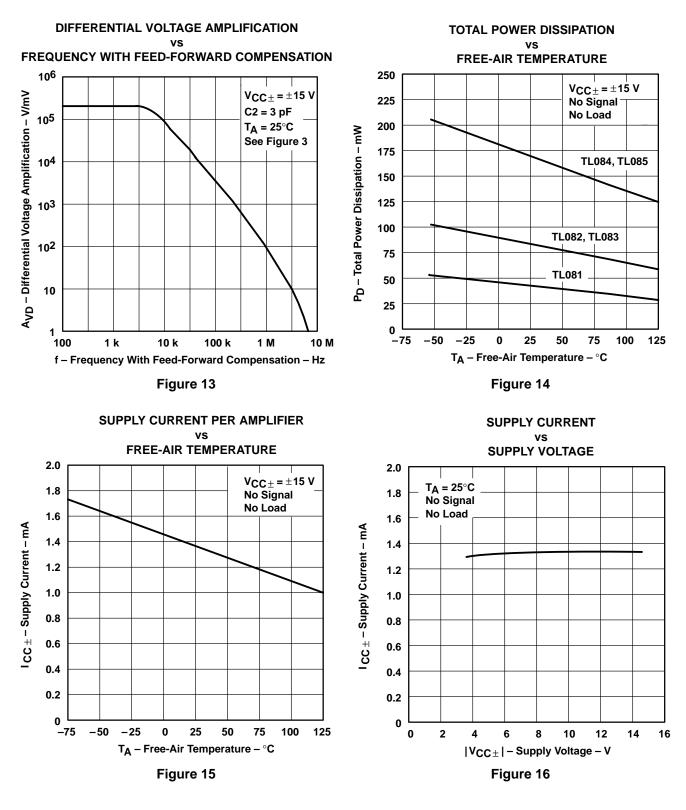
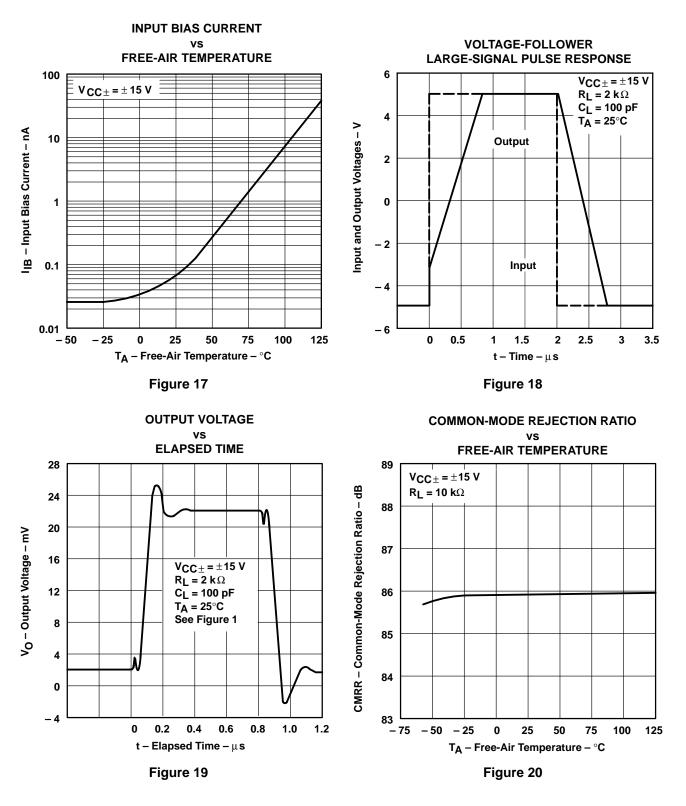
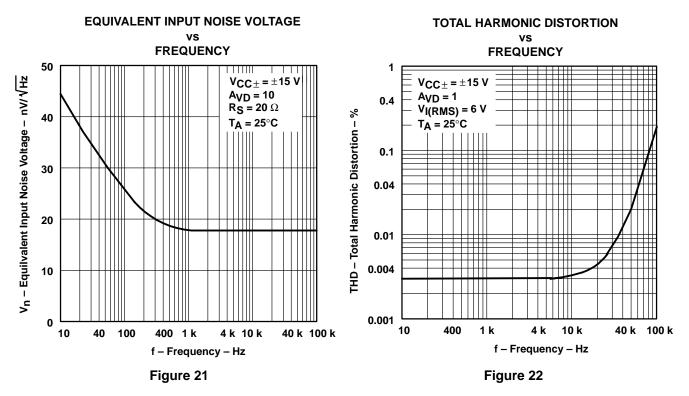



Figure 12



TYPICAL CHARACTERISTICS[†]



TYPICAL CHARACTERISTICS[†]

TYPICAL CHARACTERISTICS[†]

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

APPLICATION INFORMATION

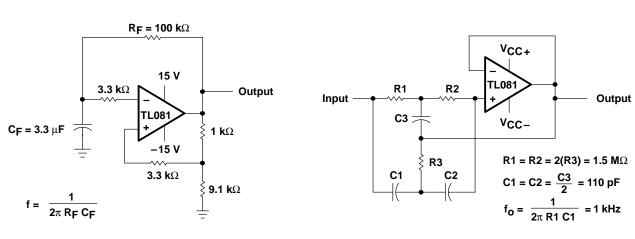


Figure 24

SLOS081D - FEBRUARY 1977 - REVISED FEBRUARY 1997

APPLICATION INFORMATION

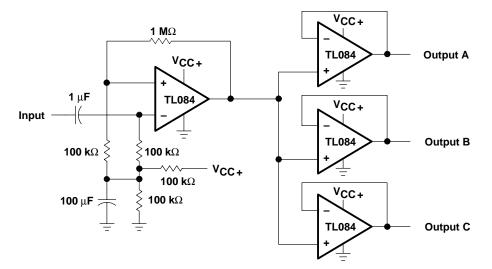
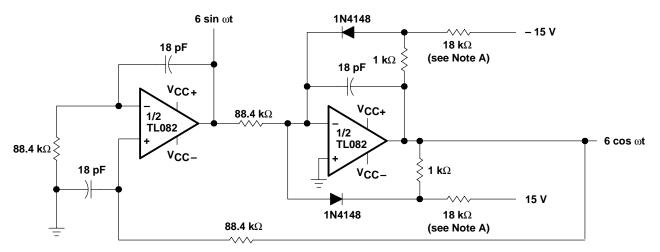



Figure 25. Audio-Distribution Amplifier

NOTE A: These resistor values may be adjusted for a symmetrical output.

Figure 26. 100-KHz Quadrature Oscillator

SLOS081D - FEBRUARY 1977 - REVISED FEBRUARY 1997

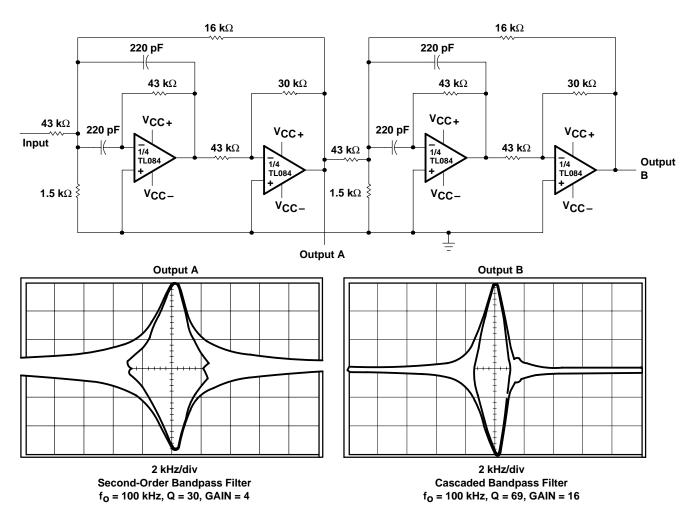


Figure 27. Positive-Feedback Bandpass Filter

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1997, Texas Instruments Incorporated