TBA810P

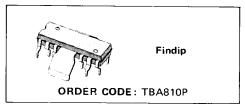
7W AUDIO AMPLIFIER

NOT FOR NEW DESIGN

The TBS810P is an improvement of TBA810S.

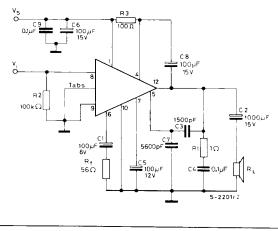
SGS-THOMSON MICROELECTRONICS

It offers:


- Higher output power ($R_{L} = 4\Omega$ and 2Ω) Low noise
- Polarity inversion protection Fortuitous open ground protection
- High supply voltage rejection (40dB min.)

The TBA810P is a monolithic integrated circuit in a 12-lead quad in-line plastic package, intended for use as a low frequency class B amplifier.

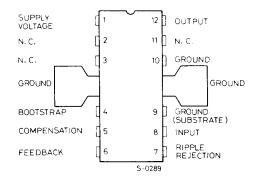
The TBA810P provides 7W output power at $16V/4\Omega$; 7W at $14.4/2\Omega$.


ABSOLUTE MAXIMUM RATINGS

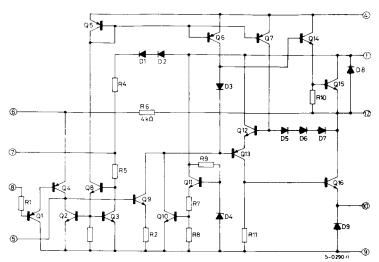
It gives high output current (up to 3A), high efficiency (75% at 60W output) very low harmonic and crossover distortion. The circuit is provided with a thermal limiting circuit and can withstand a short-circuit on the load for supply voltages up to 15V.

			_
Vs	Supply voltage	20	v
I _o	Output peak current (non repetitive)	4	А
l _o	Output peak current (repetitive)	3	Α
P _{tot}	Power dissipation at $T_{amb} \leq 80^{\circ}C$	1	Ŵ
	T _{tab} ≤90°C	5	w
T _{stg} , T _j	Storage and junction temperature	-40 to 150	°c

TEST AND APPLICATION CIRCUIT



June 1988


1/3231

CONNECTION DIAGRAM

(Top view)

SCHEMATIC DIAGRAM

THERMAL DATA

R _{th j-tab} R _{th j-amb}			12 70*	°C/W °C/W
* Obtained	with tabs soldered to printed circuit with minimized copper area	• • • • •		
2/3	SGS-THOMSON			
232				

This Material Copyrighted By Its Respective Manufacturer

ELECTRICAL CHARACTERISTICS (Refer to the test circuit; $V_s = 14.4V$, $T_{amb} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vs	Supply voltage (pin 1)		4		20	V
Vo	Quiescent output voltage (pin 2)		6.4	7.2	8	v
ld	Quiescent drain current			12	20	mA
I _b	Input bias current			0.4		μA
Po	Output power		5.5 5.5	6 7		w
V _{i (rms)}	Input saturation voltage		220			mV
Ri	Input resistance (pin 8)			5		MΩ
В	Frequency response (-3dB)	$R_{L} = 4\Omega/2\Omega$ $C_{3} = 820pF$ $C_{3} = 150pF$	40 to 20,000 40 to 10,000			Hz Hz
d	Distortion	$P_o = 50$ mW to 2.5W $R_L = 4\Omega/2\Omega$ f = 1KHz		0.3		%
Gv	Voltage gain (open loop)	$R_{L} = 4\Omega$ f = 1KHz	~~~~	80	-	dB
Gv	Voltage gain (closed loop)	$R_{L} = 4\Omega/2\Omega$ f = 1KHz	34	37	40	dB
e _N	Input noise voltage	V _s = 16V B (-3dB) = 40 to 15,000Hz		2		μV
in .	Input noise current			80		рА
η	Efficiency	$P_o = 6W$ $R_L = 4\Omega$ f = 1KHz		75		%
SVR	Supply voltage rejection	$R_{L} = 4\Omega \qquad V_{ripple} = 1V_{rms}$ $f_{ripple} = 10Hz$	40	48		dB

Fig. 1 - Output power vs. supply voltage

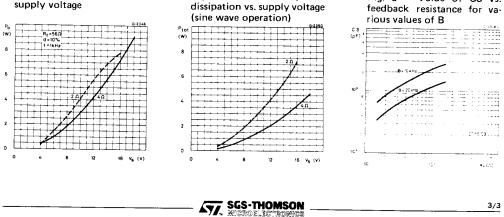


Fig. 2 - Maximum power

233

Fig. 3 - Value of C3 vs.

This Material Copyrighted By Its Respective Manufacturer

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.