

Current Transducer LT 300-S/SP4

For the electronic measurement of currents : DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical data

I _{PN} I _{PM} R _M	Primary nominal current rms Primary current, measuring range Measuring resistance		300 0 ± 5 R_{м min}	600 R _{м та}	A A
	with ± 12 V	$@ \pm 300 A_{max}$	0	30	Ω
		@ $\pm 500 A_{max}^{max}$	0	5	Ω
	with ± 18 V	@ $\pm 300 A_{max}$	20	70	Ω
		@ $\pm 500 A_{max}$	20	25	Ω
I _{sn}	Secondary nominal c	urrent rms	150		mΑ
κ _N	Conversion ratio		1 : 200	0	
Vc	Supply voltage (± 5 %	6)	± 12	18	V
I _c	Current consumption		28 (@ ±	18V)+ I	_s mA

Accuracy - Dynamic performance data

X _g	Overall accuracy @ I_{PN} , $T_A = 25^{\circ}C$	± 0.5		%
e _	$ I_{PN,} T_{A} = -40^{\circ}C $ Linearity error	± 3 < 0.1		% %
I _o I _{om}	Offset current @ $\mathbf{I}_{P} = 0$, $\mathbf{T}_{A} = 25^{\circ}$ C Magnetic offset current @ $\mathbf{I}_{P} = 0$ and specified \mathbf{R}_{M} ,	Тур	Max ± 0.3	mA
I _{ot}	after an overload of $3 \times I_{PN}$ Temperature variation of I_{o} - 40°C 25°C - 25°C + 75°C		± 0.2 ± 1 ± 0.5	mA mA mA
t, di/dt BW	Response time ¹⁾ to 90 % of I _{PN} step di/dt accurately followed Frequency bandwidth (- 1 dB)	< 1 > 50 DC ?	150	μs A/μs kHz

General data

Ambient operating temperature	- 40 + 75	°C	
Ambient storage temperature	- 50 + 85	°C	
Secondary coil resistance @ $T_{A} = 75^{\circ}C$	35	Ω	
Mass	230	g	
Standards	EN 50155: 19	EN 50155: 1995	

300 A = PN

Features

- Closed loop (compensated) current transducer using the Hall effect
- Isolated plastic case recognized according to UL 94-V0.

Special features

- $\mathbf{T}_{A} = -40^{\circ}\text{C} .. + 75^{\circ}\text{C}$
- $X_{g} = \pm 3 \% @ T_{A} = -40^{\circ}C$
- Burn-in.

Advantages

- Excellent accuracy
- Very good linearity
- · Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- Single or three phases inverter
- Propulsion and braking chopper
- Propulsion converter
- Auxiliary converter
- Battery charger.

Application Domain

• Traction.

Note: ¹⁾ With a di/dt of 100 A/µs.

page 1/3

Voltage transducer LT 300-S/SP4

Isolation characteristics				
\mathbf{V}_{d}	Rms voltage for AC isolation test, 50 Hz, 1 min	6	kV	
		Min		
dCp	Creepage distance	42.7	mm	
dCl	Clearance distance	42.7	mm	
СТІ	Comparative Tracking Index (Group IIIa)	225		

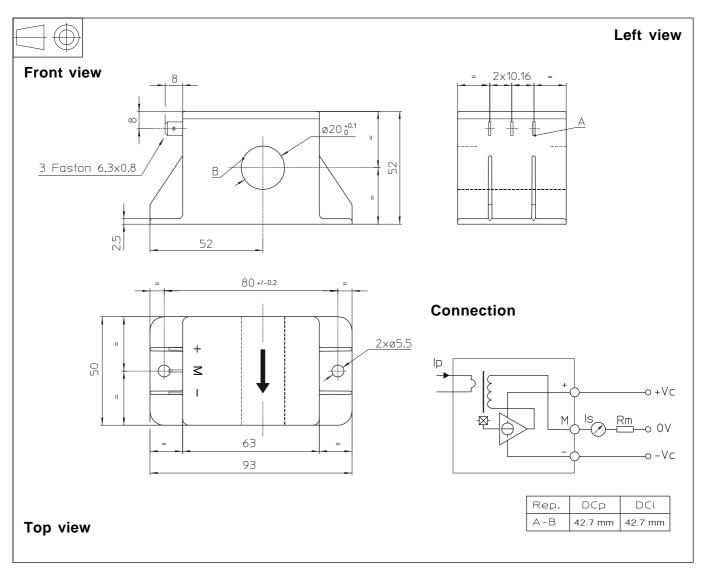
Safety

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.

Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply).

Ignoring this warning can lead to injury and/or cause serious damage.


This transducer is a built-in device, whose conducting parts must be inaccessible after installation.

A protective housing or additional shield could be used.

Main supply must be able to be disconnected.

Dimensions LT 300-S/SP4 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Transducer fastening
 - Recommended fastening torque
- Primary through-hole
- Connection of secondary
- ± 0.3 mm
- 2 holes Ø 5.5 mm
- 2 M5 steel screws 3.8 Nm or 2.80 Lb - Ft.
- Ø 20 mm
- 3 Faston 6.3 x 0.8 mm

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C.
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.

page 3/3